The Environmental Health & Safety Department (EH&S), in partnership with UW Facilities, conducted a review of the benefits, limitations and performance standards for plexiglass barriers, as well as guidance on prioritizing the installation where there is an increased potential for close contact with others. University units considering the use of physical barriers (plexiglass or other similar materials such as polycarbonate) may consider this alternative strategy as a component of their overall COVID-19 prevention efforts to help reduce the risk of COVID-19 transmission in public areas and worksites.

BACKGROUND & RISK REDUCTION
The modes of COVID-19 transmission occurs from mucous membrane exposure to respiratory droplets from coughs/sneezes during close contact (within 6 feet) with an infected individual. Droplets may enter the mouth or other mucus membrane of an uninfected individual and subsequently cause transmission of the virus. This is the primary route of COVID-19 transmission identified by the Centers for Disease Control and Prevention (CDC).

To effectively minimize COVID-19 risk, it is important to implement multi-layered strategies. In order of effectiveness, workplaces should focus on:

- Eliminating the hazard (keep sick people at home)
- Isolating people from the hazard (engineering controls, e.g., use equipment such as plexiglass barriers)
- Changing the way people work (e.g., implement 6-foot distance rule between individuals, conduct environmental surface disinfection, reduce density)
- Using personal protective equipment appropriate for the task (e.g., face covering, facemask, gloves).

Workplaces should use these types of interventions together and along with general hygiene recommendations. All strategies must be customized for the work environment and should include methods that address multiple modes of transmission.

Plexiglass, has been used as a tool to provide a physical barrier between people and to help capture respiratory droplets when individuals are in close contact. Plexiglass (acrylic sheet) is a common name for poly (methyl methacrylate) or PMMA and is a transparent thermoplastic often used as an alternative to glass. PMMA is an alternative to
polycarbonate, but does not offer as much strength, ultraviolet light tolerance, ability to polish, heat or chemical resistance.

BENEFITS OF PLEXIGLASS BARRIERS

- Barriers can block respiratory droplets produced by a person who is in close contact with the barrier.
- Barriers can provide a physical separation between people to support social and physical distancing efforts.
- Barriers are appropriate in a variety of settings, including public areas, retail settings and spaces where it is difficult to maintain 6 feet of separation between individuals.
- Barriers can provide a level of protection from surface contamination in the personal workspace.
- Use of barriers are consistent with recommendations from CDC as a component of exposure controls.
- Barriers may cause minimal disruption to work and business practices in many workplaces.
- Barriers can serve as a component of a long-term strategy to reduce risk for other viruses that spread by similar modes of transmission (e.g., influenza).
- Plexiglass barriers are nonporous and easily disinfected.
- Barriers can provide a sense of safety assurance for workers and customers, and visitors.

LIMITATIONS OF PLEXIGLASS BARRIERS

- Barriers do not provide a zero-risk solution. They do not address all possible modes of transmission, such as aerosol transmission, or fully protect anyone from COVID-19.
- Barriers do not replace the need to maintain 6 feet of separation between individuals when possible.
- Barriers do not replace the need to follow other public health requirements such as practicing good hygiene (e.g., washing hands, not touching your face, staying home if you are ill), the need to wear face coverings and PPE, or other requirements and recommendations from UW EH&S, CDC, or the state of Washington.
- There may be constraints in the physical/structural environment that prevent installation of appropriately sized barriers.
- Barriers may not be feasible or appropriate in all workspaces or for all work activities.
- If not designed or installed properly for the specific work environment, barriers may obstruct or interfere with the ventilation system airflow, and fire and life safety protection systems (e.g., fire alarm notification devices, fire sprinklers, fire pull stations).
- Barriers may break if individuals lean against the material which may expose sharp edges. Consider polycarbonate if the barrier may be subjected to individuals leaning or pushing against it.

GUIDELINES FOR INSTALLATION

Barriers should be sized to block face-to-face pathways between individuals and must create a distance of at least 6 feet for any indirect pathways.
Below are examples of possible University environments and circumstances in which barriers can be beneficial. This list is not exhaustive and serves to generate conversations about potential implementation.

- Retail point of sale
- Grocery or dining checkout
- Shuttle driver protection
- Library circulation
- Reception desks
- Pharmacy pick up or drop off
- Buffet lines if a sneeze barrier is not built-in
- Ticket sales and ticket scanners
- Resident hall front desks
- Between undivided cubicles and workstations
- Facilities Stores equipment/supply desk locations

PRIORITIZATION OF PLEXIGLASS BARRIERS

Plexiglass barriers offer the ability to separate individuals that may need to be in close proximity to others. Due to increased requests for plexiglass barrier installation it is important to prioritize the areas of installation to ensure higher risk areas receive barriers first. Prioritization considerations should include certain factors such as workplace type and risk level, occupant and visitor frequency, density, placement, and pedestrian pathway density.

The prioritization of plexiglass barriers falls within the engineering controls section of the hierarchy of controls. Eliminating the hazard altogether is the best option, however, it is not always possible and therefore engineering controls may be implemented to reduce the hazard risk.
When considering the prioritization of plexiglass barrier installation it is important to determine the risk level, frequency, and volume of contact with the public and coworkers, and where adequate controls are not able to be implemented at the installation location.

<table>
<thead>
<tr>
<th>Prioritization Level</th>
<th>Area Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Higher</td>
<td>Areas of high frequency and high volume of contact with members of the general public, and lack of other controls</td>
</tr>
</tbody>
</table>
| | Examples:
| | • Food service – cashiers, serving counters
| | • Higher volume retail cashier lanes
| | • Higher volume screening and check-in areas (e.g., medical facilities, first point of entry)
| | • Ticketing/transportation desks/kiosks
| | • Higher volume reception or information desks
| | • Transportation shuttles and buses (high volume) |
| **Medium** | Areas of frequent contact with members of the general public or coworkers, and lack of other controls |
| | Examples:
| | • Lower volume reception, information and administrative stations
| | • Open work areas with close proximity workstations that lack barriers and other controls
| | • Lower volume retail locations
| | • Transportation vehicles, including research vessels |
| **Lower** | Areas that do not require contact with people and/or areas with minimal occupational contact with members of the general public or coworkers. |
| | Examples:
| | • Lower volume and density offices where social/physical distancing is strictly adhered to and minimal contact with others
| | • Areas with other installed engineering controls that are as effective or more effective than plexiglass barriers |

Plexiglass dimensions

Each plexiglass installation area will require individual considerations regarding specific plexiglass dimensions based upon specific building or furniture layout, and occupant or visitor stationing. The overall goal is to prevent respiratory droplets from one individual travelling through the air and landing on another individual and potentially causing infection. The plexiglass barriers will need to be of a certain minimum size, determined by the specific installation area.
The following spatial arrangements between individuals will need to be considered during installation of plexiglass barriers:

- Sitting near sitting
- Sitting near standing
- Standing near standing
- Individual movements within area
- High density pedestrian flow
- Multiple individuals providing services at a single location

Anthropometric data provided by the CDC states that the measured average height for adults aged 20 and over in the United States is between 63.6 and 69.0 inches. The average sitting height for individuals varies based on chair height and type; therefore, plexiglass vertical heights will need to be designed specific to the location, unless the vertical height dimensions can be applied across similar workstations in a single Work Request. To block respiratory droplets from standing individuals, the top horizontal edge height of the barrier should be at least 72 inches, or 6 feet, above the floor and accounts for the tallest average individual height with the addition of a buffer.

Ergonomics and communication considerations

The installation of plexiglass barriers has the potential for increasing the risk of musculoskeletal injuries in certain settings where the plexiglass barrier diverts normal body motion. If the plexiglass barrier consists of a pass-through or other penetration in which body mechanics are altered from normal motion to forceful motion, over time those deviations from more natural and comfortable body motion may cause musculoskeletal pain or injury.

Another factor to consider is how the plexiglass shield will affect communication between individuals. The plexiglass barrier may interfere with voice communication causing individuals to lean forward from the natural sitting or standing position to project their voice. The combination of the barrier with facemasks or cloth face coverings may also cause communication issues. In areas where plexiglass barriers are determined to interfere with communication, the installation of a no-draft speak-through or an electronic communication device should be considered.
For barriers already in place, employees that need ergonomic assistance can contact EH&S at ehsergo@uw.edu or 206.543.7388.

ADDITIONAL INSTALLATION CONSIDERATIONS

Ventilation design interference potential

The installation of plexiglass barriers may require customization at each specific location where deemed necessary. Due to the variation in plexiglass barrier dimensions, it is important to consider how the barrier will affect building airflow and overall ventilation of the space. During the design phase of the installation process, it is important to examine the ventilation design with regard to the location of supply and return air registers so that the barriers do not block air flow within spaces. Depending on the scope and location of the project, a review by UW Facilities Engineering Services may be needed as part of the Work Order process to determine potential ventilation impacts and solutions.

Regulated building materials

Many older buildings may be constructed of materials that may contain asbestos or surfaces coated with lead-containing paint. UW Facilities will consult historical data and/or conduct a hazardous materials survey to ensure building materials containing regulated materials are managed properly prior to disturbance through the installation process. Additional information about regulated building materials may be found on the EH&S Asbestos and Other Regulated Building Materials webpage.

PLEXIGLASS (ACRYLIC SHEETING) PERFORMANCE STANDARDS AND INSTALLATION CONSIDERATIONS

Plexiglass installed in UW-owned buildings should meet certain standards to ensure proper performance for the intended application. Prior to installation, the following should be referenced to verify the plexiglass type will meet the requirements of the installation purpose and location.

- Barrier construction material must be compatible with the cleaning and disinfectant products used to clean the barrier and surrounding area.
- **ASTM D4802-16 Standard Specification for Poly(Methyl Methacrylate) Acrylic Plastic Sheet**
- Food Service Areas
• ANSI 2-2014 Food Equipment

• Location specific requirements and considerations

 o Radiation safety considerations:
 ▪ Lead-lined plexiglass or lead acrylic barriers must meet the minimum lead equivalences for radiation shielding.

 o Building and fire safety considerations:
 ▪ Ensure 18 inches below ceiling to prevent interference with fire sprinkler spray patterns.
 ▪ If full height barriers are needed, EH&S will need to assess and determine if new fire safety devices will be required. Installation of new fire sprinkler or fire alarm devices may be necessary.
 ▪ Barriers must not interfere with existing corridors, aisles or other similar open pathways intended for exiting. Barriers that interfere with existing exit routes must be reviewed by EH&S.

PLEXIGLASS INSTALLATION REQUEST PROCESS

To request plexiglass installation, complete and submit the Plexiglass Barrier Installation Request Form (attached) that has been signed by the unit head or designee to UW Facilities. It is important to provide the requested information on the form to assist UW Facilities with prioritizing and streamlining the installation.

• UW Seattle: Submit the request form to the UW Facilities Care Team at careteam@uw.edu.

• UW Bothell: Submit the request form to UW Bothell Facilities Services via the Online Work Order Request.

• UW Tacoma: Submit the request form to UW Tacoma Facilities Services via the Online Work Order Request.

The UW Facilities units will consult with EH&S and as needed, Engineering Services on the installation requests. For general questions about plexiglass use and installation, contact EH&S at 206-543-7262 or ehsdept@uw.edu.

Please note: UW Medicine has an internally established barrier installation process. Please consult with UW Medicine for barrier installation at UW Medicine facilities.
RESOURCES

UW EH&S Asbestos and Other Regulated Building Materials

UW EH&S Cleaning & disinfection

UW COVID-19 Facts & Resources

UW EH&S Ergonomics

2015 Seattle Building Code

What to do if you're sick

Guidance for barriers at pharmacies

ATTACHMENT: PLEXIGLASS BARRIER INSTALLATION FORM
Appendix A:

PLEXIGLASS BARRIER INSTALLATION REQUEST FORM

The Environmental Health & Safety department (EH&S), in partnership with UW Facilities provides guidance on prioritizing the installation of barriers where there is an increased potential for close contact with others. Review the Guidance for Plexiglass Barriers in Support of COVID-19 Prevention Efforts prior to completing this form.

Please note: UW Medicine has an internally established barrier installation process. Please do not complete this form for UW Medicine facilities.

<table>
<thead>
<tr>
<th>Organization/Department:</th>
<th>Unit:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Building/Installation Location:</th>
<th>Room(s):</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Completed by / Contact Person:</th>
<th>COVID-19 Supervisor Name and Job Title:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Approved by Department/Unit Leader or Designated Person?</th>
<th>Budget Number:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes ☐</td>
<td></td>
</tr>
</tbody>
</table>

Plexiglass Barrier Installation Description: (Include quantity, number of areas, dimensions)

I am aware that plexiglass barriers do not replace the need to maintain 6 feet of separation between individuals (when possible), or the need to follow other COVID-19 prevention practices such as practicing good hygiene, or the need to wear face coverings and personal protective equipment.

☐ (select)
Proposed Installation Area

<table>
<thead>
<tr>
<th>Installation Priority</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>Food service – cashiers, serving counters</td>
</tr>
<tr>
<td>High</td>
<td>Higher volume screening and check-in area</td>
</tr>
<tr>
<td>High</td>
<td>Higher volume reception or information desk</td>
</tr>
<tr>
<td>Medium</td>
<td>Lower volume reception, information, and administrative stations</td>
</tr>
<tr>
<td>Medium</td>
<td>Lower volume retail location</td>
</tr>
<tr>
<td>Low</td>
<td>Lower volume/density office where social/physical distancing is strictly adhered with minimal contact</td>
</tr>
<tr>
<td>Low</td>
<td>Other – Please describe:</td>
</tr>
<tr>
<td>Low</td>
<td>Open work area with close proximity workstation that lacks barriers or other controls</td>
</tr>
<tr>
<td>Low</td>
<td>Transportation vehicle (e.g., research vessel)</td>
</tr>
<tr>
<td>Low</td>
<td>Area with other installed engineering controls that are as effective or more effective than plexiglass barriers</td>
</tr>
</tbody>
</table>

Installation Evaluation Questions

<table>
<thead>
<tr>
<th>Question</th>
<th>Yes</th>
<th>No</th>
<th>N/A</th>
<th>Unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Does the barrier need to be fixed in place?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Does the barrier need to be full height, floor to ceiling?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Does the barrier need to be rated for radiation shielding?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Will the barrier interfere with fire sprinkler spray patterns?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(i.e., less than 18 inches from sprinkler head)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Could the barrier interfere with emergency egress routes or fire safety equipment (e.g., strobos, audible alarms)?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Could the barrier interfere with building ventilation supply or exhaust?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Could the barrier interfere with voice communication?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(i.e., potential need for no-draft speak-through or electronic communication device)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Is there a potential for individuals to lean against the barrier?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Does the barrier need to provide privacy? (i.e., opaque material)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Photographs (please include photos to assist UW Facilities with work order process)

Please submit the completed and signed **Plexiglass Barrier Installation Request Form** to:

UW Seattle: UW Facilities Care Team at careteam@uw.edu

UW Bothell: [UW Bothell Facilities Services Online Work Order Request](https://example.com)

UW Tacoma: [UW Tacoma Facilities Services Online Work Order Request](https://example.com)