Core Ergonomic Control Methods – Examples

From the Department of Labor & Industries

<table>
<thead>
<tr>
<th>Hazard</th>
<th>Ergonomic Control Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>AWKWARD POSTURES</td>
<td></td>
</tr>
</tbody>
</table>
| Working with hand(s) above the head or the elbow(s) above the shoulder(s), more than 4 hours total per day | - Raise the worker up with elevated work platforms or ladders
- Make tools longer with articulating arms or extension handles
- Bring the work down and tilt it on its side for better access
- Provide adjustability where possible for multiple users
- Design reach distance for the shortest worker
- Provide arm supports
- Use sloping platforms with overhead conveyers to adjust for variable worker heights |
| Repetitively raising the hand(s) above the head or the elbow(s) above the shoulder(s) more than once per minute, more than 4 hours total per day | - Limit overhead storage to infrequently used items
- Raise the worker up with elevated work platforms or ladders
- Make tools longer with articulating arms or extension handles
- Bring the work down and tilt it on its side for better access
- Provide adjustability where possible for multiple users
- Design reach distance for the shortest worker |
| Working with the neck bent more than 45° (without support or the ability to vary posture), more than 4 hours total per day | - Raise and tilt objects being viewed to keep neck more upright
- Use magnifiers when working on objects with the hands in order to keep the arms and shoulders down
- Support the head with a chin/forehead cradle.
- Use monitor arms or stackers to raise up monitors
- Use video or mirror systems to view objects or locations that are difficult to see (dental/medical/surgical tasks, fork trucks) |
<table>
<thead>
<tr>
<th>Hazard</th>
<th>Ergonomic Control Methods</th>
</tr>
</thead>
</table>
| Working with the back bent forward (without support or the ability to vary posture) more than 30 degrees for more than 4 hours per day, or more than 45° for more than 2 hours per day | • Raise and tilt the work to provide better access
• Use a sit/stand stool to lower the worker
• Make tools longer with articulating arms or extension handles
• Alternate between bending, sitting, kneeling and squatting
• Make tools longer with articulating arms or extension handles
• Use clamps or vices to eliminate forceful pressing or pinches
• Use fasteners requiring minimal pinch force (e.g. plastic rather than metal)
• Use fasteners that can be inserted by tool |
| Squatting more than 4 hours total per day | • Raise the work to provide better access
• Make tools longer with articulating arms or extension handles
• Alternate between bending, sitting, kneeling and squatting
• Use body carts for ground level work
• Use short portable stools for ground level work |
| Kneeling more than 4 hours total per day | • Wear knee pads
• Raise the work to provide better access
• Make tools longer with articulating arms or extension handles
• Alternate between bending, sitting, kneeling and squatting |
| HIGH HAND FORCE | • Redesign hand-tool interface for use of a power grip
• Reduce weight of tool or object
• Use clamps or vices to eliminate forceful pressing or pinches
• Use fasteners requiring minimal pinch force (e.g. plastic rather than metal)
• Use fasteners that can be inserted by tool |
<table>
<thead>
<tr>
<th>Hazard</th>
<th>Ergonomic Control Methods</th>
</tr>
</thead>
</table>
| Pinching an unsupported object(s) weighing 2 or more lbs. per hand or pinching with a force of 4 or more pounds per hand, combined with wrists bent in flexion 30° or more or in extension 45° or more for more than 3 hours total per day | • Redesign hand-tool interface for use of a power grip
• Reduce hand-object interface to reduce slipperiness
• Reduce weight of tool or object
• Change tool, work surface orientation, or worker location to reduce bent wrist postures |
| Pinching an unsupported object(s) weighing 2 or more lbs. per hand or pinching with a force of 4 or more pounds per hand for more than 4 hours total per day | • Redesign hand-tool interface for use of a power grip
• Reduce weight of tool or object
• Rotate jobs between workers
• Use clamps or vices to eliminate forceful pressing or pinches
• Use fasteners requiring minimal pinch force (e.g. plastic rather than metal)
• Use fasteners that can be inserted by tool |
| Gripping an unsupported object(s) weighing 10 or more lbs. per hand or gripping with a force of 10 or more pounds per hand, combined with highly repetitive motions for more than 3 hours total per day | • Reduce weight of tool or object.
• Use balancers, adjustable fixtures, articulating arms to hold handled items or minimize weight held in the hand
• Use two hands rather than one
• Alternate between hands
• Sharpen cutting tools to reduce force requirements during use
• Rotate between tasks |
| Gripping an unsupported object(s) weighing 10 or more lbs. per hand or gripping with a force of 10 or more pounds per hand, combined with wrists bent in flexion 30° or more or in extension 45° or more or in ulnar deviation 30° or more for more than 3 hours total per day | • Reduce weight of tool or object.
• Change tool, work surface orientation, or worker location to reduce bent wrist postures
• Use balancers, adjustable fixtures, articulating arms to hold handled items or minimize weight held in the hand
• Use two hands rather than one
• Alternate between hands
• Sharpen cutting tools to reduce force requirements during use |
Core Ergonomic Control Methods – Examples

<table>
<thead>
<tr>
<th>Hazard</th>
<th>Ergonomic Control Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gripping an unsupported object(s) weighing 10 or more lbs. per hand or gripping with a force of 10 or more pounds per hand, more than 4 hours total per day</td>
<td>• Reduce weight of tool or object
• Rotate jobs between workers
• Use balancers, adjustable fixtures, articulating arms to hold handled items or minimize weight held in the hand
• Use two hands rather than one
• Alternate between hands
• Sharpen cutting tools to reduce force requirements during use
• Preventive maintenance of tools to reduce high hand forces
• Use bench mounted adapters to provide more leverage</td>
</tr>
<tr>
<td>HIGHLY REPETITIVE MOTIONS</td>
<td></td>
</tr>
<tr>
<td>Using the same motion with little or no variation every few seconds (excluding keying activities) more than 6 hours total per day</td>
<td>• Rotate jobs with other workers, varying the types of motion
• Use job enlargement, increase the number of tasks performed by the worker, varying the types of movement
• Reduced the speed of the motions if possible
• Use mechanical assists
• Use multifunction tools</td>
</tr>
<tr>
<td>Using the same motion with little or no variation every few seconds (excluding keying activities) combined with wrists bent in flexion 30° or more or in extension 45° or more or in ulnar deviation 30° or more, and high, forceful exertions with the hand(s), more than 2 hours total per day</td>
<td>• Re-orient or move objects into positions where bent wrists are eliminated
• Rotate jobs with other workers, varying the types of motion
• Use tools (with power grip) if exertions are required
• Provide jig/vice to hold parts reducing forceful grasping and allowing the use of two hands
• Use mechanical assists
• Use multifunction tools</td>
</tr>
<tr>
<td>Hazard</td>
<td>Ergonomic Control Methods</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Intensive keying for more than 7 hours total per day, or combined with awkward postures for more than 4 hours total per day</td>
<td>• Enlarge the job to include tasks other than keying</td>
</tr>
<tr>
<td></td>
<td>• Provide equipment to reduce awkward postures such as wrist rests, arm rests, adjustable keyboard shelves</td>
</tr>
<tr>
<td></td>
<td>• Rearrange workstation to eliminate awkward postures e.g. raise monitor, lower keyboard, bring mouse closer to keyboard</td>
</tr>
<tr>
<td></td>
<td>• Utilize voice-recognition software</td>
</tr>
<tr>
<td></td>
<td>• Utilize software macros that automate repetitive keystrokes</td>
</tr>
<tr>
<td></td>
<td>• Schedule breaks</td>
</tr>
<tr>
<td>REPEATED IMPACT</td>
<td></td>
</tr>
<tr>
<td>Using the hand (heel/base of palm) as a hammer more than once per minute more than 2 hours total per day</td>
<td>• Use rubber mallets, bean bags, or other padded tools to strike with instead of the palm</td>
</tr>
<tr>
<td></td>
<td>• Press objects into place using levers, or hydraulic or pneumatic tools</td>
</tr>
<tr>
<td></td>
<td>• Redesign assembly processes to avoid the need to pound parts in by hand</td>
</tr>
<tr>
<td></td>
<td>• Use viscoelastic padded palm pads to reduce impact</td>
</tr>
<tr>
<td></td>
<td>• Cover sharp or hard objects with pads</td>
</tr>
<tr>
<td></td>
<td>• Use different types of palm button guards such as light sensors for manual activation of equipment</td>
</tr>
<tr>
<td>Using the knee as a hammer more than once per minute more than 2 hours total per day</td>
<td>• Use tools that don't require knee kicks, such as power stretchers for carpet laying, or long handled mallets.</td>
</tr>
<tr>
<td></td>
<td>• Press objects into place using levers, or hydraulic or pneumatic tools.</td>
</tr>
<tr>
<td></td>
<td>• Relocate knee switches so that the thigh or the foot presses them.</td>
</tr>
<tr>
<td></td>
<td>• Redesign processes to avoid the need to pound parts in by knee</td>
</tr>
<tr>
<td>Hazard</td>
<td>Ergonomic Control Methods</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--</td>
</tr>
</tbody>
</table>
| HEAVY, FREQUENT or AWKWARD LIFTING | • Reduce weight of load
• Increase weight of load so that it requires mechanical assist
• Reduce the capacity of the container
• Use slides, gravity chutes to eliminate lifting
• Use mechanical assist such as overhead hoist, manipulator, vacuum lift, pneumatic balancer, forklift
• Use telescoping extendible conveyors with powered belts that reach deep into trailers
• Reduce the horizontal distance of the load away from the body by reducing the size of the packaging
• Reduce the horizontal distance of the load away from the body by removing barriers, obstacles that make access to the object difficult
• Team lift the object with two or more workers
• Improve layout of work process so the need to move materials is minimized
• Provide handholds which increase lifting capability up to 15% |
| Heavy lifting | |
| Frequent lifting | • Use mechanical assist such as overhead hoist, manipulator, vacuum lift, pneumatic balancer, forklift
• Reorganize work method to eliminate repeated handling of the same object
• Rotate workers to jobs with light or no manual handling
• Use slides, gravity chutes to eliminate lifting
• Use mobile storage racks to avoid unnecessary loading and unloading |
Core Ergonomic Control Methods – Examples

<table>
<thead>
<tr>
<th>Hazard</th>
<th>Ergonomic Control Methods</th>
</tr>
</thead>
</table>
| Awkward lifting | • Redesign workstation layout to eliminate trunk twisting by locating objects within arm’s reach
 | • Design workstation with adjustable heights to eliminate bent forward posture when lifting
 | • Eliminate the use of deep shelves that require a worker to bend and reach for objects.
 | • Store objects at 30” off the floor
 | • Provide sturdy walk-up ladder with handrails to access stored parts on high shelves/racks.
 | • Provide rigid containers to better control the load |
| HAND-ARM VIBRATION | |
| Segmental vibration | • Select power tools with lower vibration emission levels
 | • Provide regular maintenance to eliminate vibrations caused by imbalanced mechanical parts e.g. grinding wheels
 | • Increased tool weight could reduce vibration transmitted to the hands, though cautions should be taken not to introduce other risk factors
 | • Using balancers, isolators, damping materials, articulating arms, vertical suspension, and counter weighting to reduce grip requirements and provide an alternative transmission route for vibrational energy
 | • Use battery operated rather than air powered tools where possible
 | • Isolate vibration between source and hand by providing handles with a well designed mass-spring system or anti-vibration gloves
 | • Tools should have a high power to weight ratio, have low torque with a cutoff rather than a slip-clutch mechanism and have handles with a non-slip surface to reduce the need to grip tightly.
 | • Reduce vibration exposure duration |

Note: This table provides examples of how the core ergonomics principles can be used to reduce exposure to musculoskeletal hazards. These examples are a selection from the rulemaking file.